THE FUTURE OF SCIENCE

The role of young researchers in shaping research climates

Noémie Aubert Bonn, PhD student in Hasselt University (Belgium)
Open Access Ambassadors Conference - 10-11 December 2019 - Berlin, Germany
I want to be a researcher.

Cognitive Neuroscience

Strategic Networking
 Sexy topics
 Writing, writing, writing...
 High impact factors

Is that what it means to be a researcher?

PhD on Research integrity (Ethics)
1. What I learnt from my research
2. What is happening out there
3. What can young researchers do?
1. What I learnt from my research
1. Interviews and Focus Groups in biomedical research in Flanders, Belgium

2. Survey on research assessments
1. What leads researchers to success?

2. What threatens integrity?

3. Who is responsible?
Step 1. Interviews and Focus Groups in Flanders

1. What leads researchers to **success**?

2. What threatens **integrity**?

3. Who is **responsible**?
Step 2. Survey on research assessments

Publishing in high impact journals is...

<table>
<thead>
<tr>
<th>Statement</th>
<th>Essential</th>
<th>Important</th>
<th>Irrelevant</th>
<th>Unfavorable</th>
<th>Detrimental</th>
</tr>
</thead>
<tbody>
<tr>
<td>...in advancing my career</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...in advancing science</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>...to my personal satisfaction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Feel free to leave a comment (optional)
Publishing papers is...

Publishing in high impact journals is...

Publishing commentaries or editorials is...
Publishing more papers than others is...
Publishing open access is...
Peer reviewing is...
Replicating past research is...
Publishing findings that did not work (i.e., negative findings) is...
Sharing your full data and detailed methods is...
Reviewing raw data from students and collaborators is...
Conducting research with a high risk of failure is...
Connecting with renowned researchers is...
Collaborating across borders, disciplines, and sectors is...
Getting cited in scientific literature is...
Having your papers read and downloaded is...
Having public outreach (e.g., social media, news, etc.) is...
Having your results used or implemented in practice is...
Having luck is...
1. What I learnt from my research

 a. There is a clear issue in the way we assess scientists
a. There is a clear issue in the way we **assess** scientists

1. What leads to **SUCCESS**?

- **WHO**
 - researcher

- **WHAT**
 - output

- **HOW**
 - process
a. There is a clear issue in the way we assess scientists

Current assessments...

WHO

reSEARCHER

WHAT

OUTPUT

HOW

PROCESS
There is a clear issue in the way we assess scientists.
a. There is a clear issue in the way we **assess** scientists

Current assessments...

2. What threatens **INTEGRITY**?
a. There is a clear issue in the way we assess scientists.

Current assessments...

...overvalue outputs

...ignore important processes

And they do that while...

...expecting exceptional output → Discourages realism

...looking at researchers individually → Discourage collaboration

...being based on competition → Discourage openness

2. What threatens INTEGRITY?
Current assessments…

…overvalue outputs

…ignore important processes

And they do that while…

…expecting exceptional output

…looking at researchers individually

…being based on competition
a. There is a clear issue in the way we assess scientists

Current assessments…

…overvalue outputs

…ignore important processes

And they do that while…

…expecting exceptional output

…looking at researchers individually

…being based on competition

Disinterested
Devoted, selfless
Part of a community
Rigorous
Realistic

IDEAL

CONFLICT!

Career minded
Strategic
Competitive
Quantity > Quality
Extraordinary claims

SUCCESSFUL
1. What I learnt from my research

a. There is a clear issue in the way we assess scientists

b. Research assessments shape our perspective of success
“…I think that the definition of success is highly dependent of the institute and the environment you’re in […] And if you’re constantly told ‘This is how we measure success’ then…”

Post Doc
b. Research assessments shape our perspective of success

Personal successes changes over time...

PhD Students
- Help patients
- Make clinical impact

Post Doc
- Help PhD students grow
- Build connections
- Fulfill requirements

Researchers
- Create new knowledge
- Publish and fulfill criteria
- Be a recognized expert

Make a difference!

Survive

Strive
b. Research assessments shape our perspective of success

- **PERSONAL satisfaction**
 - Publishing findings that did not work (i.e., negative findings)
 - Publishing commentaries or editorials
 - Having your papers read and downloaded
 - Having public outreach (e.g., social media, news, etc.)
 - Publishing papers
 - Having luck
 - Connecting with renowned researchers
 - Publishing in high impact journals
 - Getting cited in scientific literature
 - Publishing more papers than others

- **OUTPUT**
 - Conducting innovative research with a high risk of failure
 - Replicating past research
 - Sharing your full data and detailed methods
 - Peer reviewing
 - Publishing open access
 - Collaborating across borders, disciplines, and sectors
 - Having your results used or implemented in practice

- **CAREER**
 - mostly OUTPUT
 - advancing
 - mostly PROCESSES
 - advancing
 - SCIENCE
b. Research assessments shape our perspective of success
1. What I learnt from my research

 a. There is a clear issue in the way we assess scientists

 b. Research assessments shape our perspective of success

 c. The scientific cycle accentuates the problem
d. The scientific cycle accentuates the problem

Pressure
Competition
Unrealistic expectations

Stress
Burn out
Insecurity
Mental health issues
d. The scientific cycle accentuates the problem

- Pressure
- Competition
- Unrealistic expectations

- Stress
- Burn out
- Insecurity
- Mental health issues

Many leave academia
d. The scientific cycle accentuates the problem

Pressure
Competition
Unrealistic expectations

Stress
Burn out
Insecurity
Mental health issues

Many leave academia
d. The scientific cycle accentuates the problem

- Pressure
- Competition
- Unrealistic expectations

- Stress
- Burn out
- Insecurity
- Mental health issues

Fierce competition

Many leave academia
d. The scientific cycle accentuates the problem

- Pressure
- Competition
- Unrealistic expectations

- Stress
- Burn out
- Insecurity
- Mental health issues

Fierce competition

Many leave academia
d. The scientific cycle accentuates the problem

- Pressure
- Competition
- Unrealistic expectations

- Stress
- Burn out
- Insecurity
- Mental health issues

Fierce competition

Many leave academia
d. The scientific cycle accentuates the problem

- Pressure
- Competition
- Unrealistic expectations

Stress
Burn out
Insecurity
Mental health issues

Fierce competition

Many leave academia
d. The scientific cycle accentuates the problem

Will teach the new students how to survive in the system
- Beating competition
- Producing outputs the system wants
- Impressive metrics

Pressure
Competition
Unrealistic expectations

Stress
Burn out
Insecurity
Mental health issues

Many leave academia
d. The scientific cycle accentuates the problem

My promotor is always so reluctant to let me go and show the data to other people. [...] he is always so scared that other people are going to steal his ideas...

"Will teach the new students how to survive in the system
- Beating competition
- Producing outputs the system wants
- Impressive metrics"

Fierce competition
Many leave academia
d. The scientific cycle accentuates the problem

I can't present on a congress because there are only three articles published on the subject I'm studying, so the supervisors are scared if I make a poster or I present, that other researchers will get interested in the same topic, and then, if they publish first all I'm doing is a waste of time...

Will teach the new students how to survive in the system

- Beating competition
- Producing outputs the system wants
- Impressive metrics

Fierce competition

Many leave academia
d. The scientific cycle accentuates the problem

- Pressure
- Competition
- Unrealistic expectations
- Stress
- Burn out
- Insecurity
- Mental health issues
- Fierce competition
- Many leave academia
d. The scientific cycle accentuates the problem

- Fierce competition
- Pressure
- Competition
- Unrealistic expectations
- Stress
- Burn out
- Insecurity
- Mental health issues

Many leave academia
1. What I learnt from my research

a. There is a clear issue in the way we assess scientists

b. Research assessments shape our perspective of success

c. The scientific cycle accentuates the problem

d. We all play a role in the problem
d. We all play a role in the problem

3. Who is responsible?
d. We all play a role in the problem

PhD Students → Institution Leaders

Post Doc → Policy Makers

Researchers → Research Funders

Lab Technicians → Editors/Publishers

Ex-Researchers → Research Integrity Offices
d. We all play a role in the problem
Key findings: Summary

Current research assessments **overvalue outputs and quantity** but ignore important research **processes and quality**.

Since permanent positions and resources are scarce, we are **constantly competing against one another**. Unfortunately, the **skills that make us successful and that allow us to survive in academia** are not necessarily the ones that ensure the **best science**.

We know we have a problem, but we tend to **point the finger at other actors and to lose trust in one another** instead of taking concrete action to change.
2. What is happening out there?
Expression of concern: ‘We have a problem’
UNDER PRESSURE

YOUNG RESEARCHERS ARE HAVING TO FIGHT HARDER THAN PAST GENERATIONS FOR A SMALLER SHARE OF THE ACADEMIC PIE.

BY BRENDAN MAHER AND MIGUEL SUAREZ ANFREDS

Scientists and policymakers around the world increasingly worry about the plight of young researchers in academia, and for good reason. Competition for tenure-track positions has surged, and some early-career researchers face tough odds in the quest for funding. As a result, many are laying low for their efforts in preparing and writing grant applications. Although everyone is under pressure, those just starting out seem to feel the impacts more acutely.

The number of graduates with advanced science and engineering degrees has been rising around the world. The Organisation for Economic Co-operation and Development (OECD) has recorded an increase in the number of science-related doctorates that would typically funnel into academic positions. The leading OECD nations in 2014 were:

PHDS RISING, JOBS FLAT

- **UNITED STATES**: 20,600
- **GERMANY**: 17,400
- **UNITED KINGDOM**: 12,000
- **JAPAN**: 7,400

10%

The proportion of young people completing a doctorate and engaging in research for the first time has more than doubled in the past two decades.

2012

2015

30

30

2012

2015

30

30

Average annual increase

- **UNITED STATES**: 0.8%
- **GERMANY**: 6.2%
- **UNITED KINGDOM**: 0.7%
- **JAPAN**: 4.3%

Government funding for research has plateaued or declined in many countries, and success rates for grants is now below 20% for some of the most important funders. Early-career scientists struggle to compete for grants against researchers who have a better knowledge of the system, more academic and administrative resources and richer publication lists. The Medical Research Council (MRC) — part of Research Councils UK — for example, shows lower success rates for younger scientists.

TOUGH COMPETITION

Current academic staffing models for early-career scientists are not sustainable. In the United States, for example, the National Institutes of Health (NIH) and the National Science Foundation (NSF) — the two largest US federal funders of research — are currently supporting only 5% of the researchers who apply for their grants. Although everyone is under pressure, those just starting out seem to feel the impacts more acutely.

The proportion of young people completing a doctorate and engaging in research for the first time has more than doubled in the past two decades.

2014

2015

500

500

3000

3000

SOURCES: OECD; NATURE BIOTECHNOL. 31, 938–941 (2013); GERMAN RESEARCH FOUNDATION; RESEARCH COUNCILS UK; NIH; EUROPEAN RESEARCH COUNCIL; MRC
Scientists and policymakers around the world increasingly worry about the plight of young researchers in academia, and for good reason. Competition for tenure-track positions has surged, and some early-career researchers face tough odds in the quest for funding. As a result, many have lower pay–off for their efforts in preparing and writing grant applications. Although everyone is under pressure, those just starting out seem to feel the impacts more acutely.

The number of graduates with advanced science and engineering degrees has been rising around the world. The Organisation for Economic Co-operation and Development (OECD) has recorded an increase in the number of science-related doctorates that would typically funnel into academic positions. The leading OECD nations in 2014 were:

- United States: 20,600
- Germany: 17,400
- United Kingdom: 12,000
- Japan: 7,400

The proportion of young people completing a doctorate of any kind in OECD member countries has doubled from less than two decades ago. In most countries, however, the growth in academic jobs has not kept pace. US universities, for example, create only about 3,000 new full-time positions annually.

Government funding for research has plateaued or declined in many countries, and success rates for grants is now below 20% for some of the most important funders. Early-career scientists struggle to compete for grants against researchers who have a better knowledge of the system, more academic and administrative resources and richer publication lists. The Medical Research Council (MRC) — part of Research Councils UK — for example, shows lower success rates for younger scientists.

Fewer numbers, better science
Scientific quality is hard to define, and numbers are easy to look at. But bibliometrics are warping science — encouraging quantity over quality. Leaders at two research institutions describe how they do things differently.
Scientists and policymakers around the world increasingly worry about the plight of young researchers in academia, and for good reason. Competition for tenure-track positions has surged, and some early-career researchers face tough odds in the quest for funding. As a result, many are turning to postdoc positions in an attempt to gain research experience. Although this is an under-practiced route, it is starting to seem like the only way to advance a career.

There are indications that even high-achieving junior scholars may face a significant amount of stress. As competition for jobs and funding increases, so do perceived pressures on junior scholars to publish and improve their publication lists. The Medical Research Council (MRC) — part of Research Councils UK — shows lower success rates for younger scientists. The proportion of young people completing a doctorate of any kind in OECD member countries has doubled in less than two decades.

In some countries, however, the growth in academic jobs has not kept pace. For example, US universities create only about 3,000 new full-time positions annually. Government funding for research has plateaued or declined in many countries, and success rates for grants is now below 20% for some of the most important funders. Early-career scientists struggle to compete for grants against researchers who have a better knowledge of the system, more academic and administrative resources and richer publication lists. The Medical Research Council (MRC) — part of Research Councils UK — shows lower success rates for younger scientists. As a result, many see lower pay-offs for their efforts in preparing and writing grant applications. Although everyone is under pressure, those just starting out seem to feel the impacts more acutely.

The proportion of young people completing a doctorate of any kind in OECD member countries has doubled from less than two decades ago. In most countries, however, the growth in academic jobs has not kept pace. US universities, for example, create only about 3,000 new full-time positions annually. Government funding for research has plateaued or declined in many countries, and success rates for grants is now below 20% for some of the most important funders.

Early-career scientists struggle to compete for grants against researchers who have a better knowledge of the system, more academic and administrative resources and richer publication lists. The Medical Research Council (MRC) — part of Research Councils UK — shows lower success rates for younger scientists. As a result, many see lower pay-offs for their efforts in preparing and writing grant applications. Although everyone is under pressure, those just starting out seem to feel the impacts more acutely.
YOUNG RESEARCHERS ARE THE ACADEMIC PIE.

Ph.D. RISING, JOBS FLAT

The number of PhDs awarded globally has been on the rise, but the number of new academic positions has not kept pace with that growth. In many countries, the result is lower pay–off for Ph.D. students in academia, and for good reason.

TOUGH COMPETITION

In most countries, however, the growth in academic jobs has not kept pace. US universities, for example, create only about 4,300 new full-time positions annually.

FUNDING

Government funding for research has plateaued or declined in many countries, and success rates for grants is now below 20% for some of the most important funders.
UNDER PRESSURE

YOUNG RESEARCHERS ARE HAVING TO FIGHT HARDER THAN PAST GENERATIONS FOR A SMALLER SHARE OF THE ACADEMIC PIE.

A personal tale on science and society

World view

To fix research assessment, swap slogans for definitions

Evaluation reform will get around to clarity without conceptual clarity, warns Anna Mazarb.

By Anna Mazarb

The need for clarity -- research Howard is too weak. Without a balanced view, we risk losing the focus needed to identify and develop effective initiatives. The importance of assessing research quality cannot be overstated. Yet, too often, the focus is on the wrong thing.

To fix this, we need a clear understanding of what research assessment should be. The current approach is fragmented and lacks a coherent framework. We need to think beyond slogans and focus on the real issues. It's time to move beyond slogans and into action.

The key lies in recognizing the importance of research assessment. Without a clear understanding of what it should achieve, we risk losing sight of the bigger picture.

This is a call to action. We need to ensure that research assessment is not a box-ticking exercise, but a tool that helps us identify and develop effective initiatives. It's time to move beyond slogans and into action.

The greatest predictor of success in research assessment is the clarity of the purpose. Without a clear understanding of what is expected, we risk losing sight of the bigger picture.

This is a call to action. We need to ensure that research assessment is not a box-ticking exercise, but a tool that helps us identify and develop effective initiatives. It's time to move beyond slogans and into action.

The key lies in recognizing the importance of research assessment. Without a clear understanding of what it should achieve, we risk losing sight of the bigger picture.

This is a call to action. We need to ensure that research assessment is not a box-ticking exercise, but a tool that helps us identify and develop effective initiatives. It's time to move beyond slogans and into action.
UNDER PRESSURE

than past generations for a smaller share of the academic pie.

PhDs rising, the number of graduates with advanced science and world. The Organisation for Economic Co-operation would typically funnel into academic positions. The leading OECD nations in 2014 were:

UNITED STATES

GERMANY

.6%

3,000

444 | NATURE | VOL 538 | 27 OCTOBER 2016

1

40,

1

25

20,600

Average annual increase A

has doubled from

0.8%

0.8%

0.7%

0.7%

Government funding for research has plateaued

(%) of family needs due to conflicting work commitments. High job demands for experiencing mental health challenges was having difficulty taking care of experienced mental health challenges was having difficulty taking care of their everyday personal environment, even if you think it's probably a temporary thing. "Mental health problems can develop into serious threats to one's wellbeing and career, and can have detrimental consequences in the long-term," they write. So, if you're struggling, it's important to "[s]eek professional help or seek help in your efforts in preparing and writing your grant applications. Although everyone is under pressure, those just starting out seem to feel the odds in the quest for funding. As a result, many see lower pay–offs in the pursuit of research.

As a result, many see lower pay–offs in the pursuit of research.

UNDER PRESSURE

than past generations for a smaller share of the academic pie. On average, about 12% of the world's population completes a doctorate of any kind. In 2012 and 2013, the number of young people completing a doctorate of any kind has doubled from 2012.

Scientists and policymakers around the world increasingly worry about the plight of young researchers in academia, and for good reason. In most countries, however, the odds in the quest for funding is now below 20% for some of the most important funders. The Medical Research Council (MRC) — part of Research Councils UK — for example, shows lower success rates for younger scientists.

Anseel reports. Although these results come from a small sample — 3659 students, the findings are consistent with a 2015 study of 35,000 students in the sciences and social sciences — they are nonetheless an important addition to the growing literature about the mental health of researchers. A recent study by Elisabeth Pain and Katia Levecque at universities in Flanders, Belgium, 90% of whom were studying the sciences and social sciences — they are nonetheless an important addition to the growing literature about the mental health of researchers.
UNDER PRESSURE

YOUNG RESEARCHERS ARE HAVING TO FIGHT HARDER THAN PAST GENERATIONS FOR A SMALLER SHARE OF THE ACADEMIC PIE.

PHDS RISING, JOBS FLAT

Engineering degrees have been rising around the world. The Organisation for Economic Co-operation and Development (OECD) has recorded an increase in the number of science-related doctorates that would typically funnel into academic positions. The leading OECD nations in 2014 were:

UNITED STATES
GERMANY
UNITED KINGDOM
JAPAN

The proportion of young people completing a doctorate of any kind has doubled from 0.8% in 2010 to 1.6% in 2014. Overall, 3.000 young researchers are at risk of having or developing a common psychiatric disorder like depression, a recent report indicates (Nature, 938–941 (2013); GERMAN RESEARCH FOUNDATION; NIH; EUROPEAN RESEARCH COUNCIL; MRC).

Scientists and policymakers around the world are struggling with the plight of young researchers in academia. As a result, many see lower pay–offsetting conditions in preparing and writing grants against researchers who have a better knowledge of the system, more academic and personal environment, even if you think it's probably a temporary thing.”)

The greatest predictor of Research Councils UK — for example, shows lower success rates for younger scientists.

Although these results come from a small sample—3659 students at universities in Flanders, Belgium, 90% of whom were studying the sciences and social sciences—they are nonetheless an important addition to the growing literature about the detrimental consequences in the long-term,” they write. So, if you're unhappy and depressed, losing sleep because of worry, and not being able to overcome difficulties or enjoy day-to-day activities, don’t worry. You're not alone.” Beyond that, the authors encourage Ph.D. students to appreciate the importance of their research and be proud of their achievements.

In most countries, however, the growth in academic jobs has not kept pace with the growth in academic degrees. In the United States, for example, create only about 25,000 new full-time positions annually. This means that the number of young researchers entering the academic job market has outpaced the number of academic positions, resulting in a smaller share of the academic pie for young researchers. A study published in the journal Nature in 2013 found that the proportion of young people completing a doctorate of any kind has doubled from 0.8% in 2010 to 1.6% in 2014. Overall, 3,000 young researchers are at risk of having or developing a common psychiatric disorder like depression, a recent report indicates.

The UK’s research sector is powering ahead, with our world-leading universities and research institutions

Credit: Welcome

If we aren’t working in a culture that’s creative, inclusive and honest, then we’re not getting the best research.

The emphasis on excellence in the research system is stifling diverse thinking and positive behaviours. As a community we can rethink our approach to research culture to achieve excellence in all we do.

Jeremy Farrar
Director
Wellcome

Why we need to reimagine how we do research

The emphasis on excellence in the research system is stifling diverse thinking and positive behaviours. As a community we can rethink our approach to research culture to achieve excellence in all we do.
UNDER PRESSURE

YOUNG RESEARCHERS ARE HAVING TO FIGHT HARDER FOR A SMALLER SHARE OF THE ACADEMIC PIE.

The number of graduates with advanced science and engineering degrees has been rising around the world. The Organisation for Economic Co-operation and Development (OECD) has recorded an increase in the number of science-related doctorates that would typically funnel into academic positions. The GERMAN RESEARCH FOUNDATION, GERMANY, UNITED KINGDOM, and JAPAN have all seen a marked rise in graduates completing a doctorate of any kind in OECD member countries.

In most countries, however, the growth in academic jobs has not kept pace. US universities, for example, create only about 25 new full-time positions annually. Competition for tenure-track positions has surged, and some early-career researchers face tough odds in the quest for funding. As a result, many see lower pay–offers than two decades ago.

These financial pressures can be damaging, not least when they are combined with the other stresses of the job. For this reason, governments and funding bodies have increased their concern about young researchers’ mental well-being. Many have been better informed by research reports: the Norwegian Research Council found that researchers had three times the average risk of suicide, and the Medical Research Council (MRC)–funded study showed how such distress could develop into serious threats to one’s wellbeing and career, and can have detrimental consequences in the long-term, “they write. So, if you’re unhappy and depressed, losing sleep because of worry, and not being able to overcome difficulties or enjoy day-to-day activities. The greatest predictor of distress was having difficulty taking care of themselves. Mental health problems can not alone.” Beyond that, the authors encourage Ph.D. students to appreciate how important it is to take care of themselves. “Mental health problems can...
Mobilisation
THE SLOW SCIENCE MANIFESTO

We are scientists. We don't blog. We don't twitter. We take our time.

Don't get us wrong—we do say yes to the accelerated science of the early 21st century. We say yes to the constant flow of peer-review journal publications and their impact; we say yes to science blogs and media & PR necessities; we say yes to increasing specialization and diversification in all disciplines. We also say yes to research feeding back into health care and future prosperity. All of us are in this game, too.

However, we maintain that this cannot be all. Science needs time to think. Science needs time to read, and time to fail. Science does not always know what it might be at right now. Science develops unsteadily, with jerky moves and unpredictable leaps forward—at the same time, however, it creeps about on a very slow time scale, for which there must be room and to which justice must be done.

Slow science was pretty much the only science conceivable for hundreds of years; today, we argue, it deserves revival and needs protection. Society should give scientists the time they need, but more importantly, scientists must take their time.

We do need time to think. We do need time to digest. We do need time to misunderstand each other, especially when fostering lost dialogue between humanities and natural sciences. We cannot continuously tell you what our science means; what it will be good for; because we simply don’t know yet. Science needs time.

—Bear with us, while we think.

THE SLOW SCIENCE ACADEMY

Support the Academy and express your sympathy on Facebook. You can also download the slow science manifesto and information as a 2-page pdf here and post it round your institutions. Thank you.
THE SLOW SCIENCE MANIFESTO

We are scientists. We don't blog. We don't twitter. We take our time.

Don't get us wrong—we do say yes to the accelerated science century. We say yes to the constant flow of peer-review journ their impact; we say yes to science blogs and media & PR, nee increasing specialization and diversification in all discipliner research feeding back into health care and future prosperity, game, too.

However, we maintain that this cannot be all. Science needs time to read, and time to fail. Science does not alwa at right now. Science develops unsteadily, with jerky mov forward—at the same time, however, it creeps about on which there must be room and to which justice must be

Slow science was pretty much the only science conceivable for hundreds of years; which there must be room and to which justice must be.
Pourquoi la « désexcellence » ?

« L'Excellence » est puritain en ce début de 21ème siècle. Dans l'industrie, l'alimentation, le sport, la médication, et maintenant l'éducation. Elle exprime le dépérissement des normes, et se traduit par des slogans de « performance » et de « compétitivité » à la télévision et même dans l'intimité de nos foyers. Elle exprime le dépérissement des disciplines, l'exclusion des diverses écoles de pensée et le renforcement des spécialisations, ouvrant la voie à des substances transformées par la pression de l'industrie, les sciences s'adonnant à la compétitivité.

Le slow science a pour objectif de lever ces contraintes, et de promouvoir une nouvelle forme de science, qui valorise la diversité, la réflexion, et l'innovation. La slow science est une forme de science qui valorise l'innovation, la réflexion, et l'interdisciplinarité. Elle s'oppose à l'approche unidimensionnelle de la science, qui privilégie la rapidité et l'efficacité.

La slow science est une forme de science qui valorise l'innovation, la réflexion, et l'interdisciplinarité. Elle s'oppose à l'approche unidimensionnelle de la science, qui privilégie la rapidité et l'efficacité.

Les défis de la slow science sont multiples, et impliquent une ré réflexion générale sur la manière dont nous entendons et concevons la science. Elle met en avant l'importance de considérer la science comme un processus évolué, et non comme une collection de faits prêts à l'emploi. Elle souligne aussi l'importance de considérer la science comme une pratique sociale, et non comme un ensemble d'entités individuelles.

La slow science est une forme de science qui valorise l'innovation, la réflexion, et l'interdisciplinarité. Elle s'oppose à l'approche unidimensionnelle de la science, qui privilégie la rapidité et l'efficacité.
We don't blog. We don't twitter. We face our time—
we do say yes to the accelerated science and to the constant flow of peer-review journals and blogs—
and natural sciences. We cannot continuously tell you what our science means; we need time to think. We do need time to digest. We do need time to mis

—

But this cannot be all. Science needs time to fail. Science does not always know what it might be capable of, despite being most of the time it a very important

THE SLOW SCIENCE MANIFESTO

...
More formal recommendations
San Francisco Declaration on Research Assessment

There is a pressing need to improve the ways in which the output of scientific research is evaluated by funding agencies, academic institutions, and other parties. To address this issue, a group of editors and publishers of scholarly journals met during the Annual Meeting of The American Society for Cell Biology (ASCB) in San Francisco, CA, on December 16, 2012. The group developed a set of recommendations, referred to as the San Francisco Declaration on Research Assessment. We invite interested parties across all scientific disciplines to indicate their support by adding their names to this Declaration.

The outputs from scientific research are many and varied, including: research articles reporting new knowledge, data, reagents, and software; intellectual property, and highly trained young scientists. Funding agencies, institutions that employ scientists, and scientists themselves, all have a desire, and need, to assess the quality and impact of scientific outputs. It is thus imperative that scientific output is measured accurately and evaluated wisely.

The Journal Impact Factor is frequently used as the primary parameter with which to compare the scientific output of individuals and institutions. The Journal Impact Factor, as calculated by Thomson Reuters®, was originally created as a tool to help
General Recommendation

1. Do not use journal-based metrics, such as Journal Impact Factors, as a surrogate measure of the quality of individual research articles, to assess an individual scientist’s contributions, or in hiring, promotion, or funding decisions.
The Leiden Manifesto for research metrics

Use these ten principles to guide research evaluation, urge Diana Hicks, Paul Wouters and colleagues.
The Leiden Manifesto for research metrics

Use these ten principles to guide research evaluation, urge Diana Hicks, Paul Wouters and colleagues.

D
The Hong Kong Principles for Assessing Researchers: Fostering Research Integrity

David Moher1,2, Lex Bouter1,2, Sabine Kleinert1, Paul Glassiou1, Mai Har Sham2
Virginia Barbour1, Anne-Marie Coriat1, Nicole Foeger2, Ulrich Dimagi3

1Centre for Journalism, Clinical Epidemiology Program, Ottawa Hospital Research Institute;
2School of Epidemiology and Public Health, University of Ottawa, Ottawa, Canada;
3Department of Epidemiology and Biostatistics, Amsterdam University Medical Centers,
location VUMc; 4Department of Philosophy, Faculty of Humanities, Vrije Universiteit,
Amsterdam, The Netherlands; 5The Lancet, London Wall Office, London, UK; 6Institute for
Evidence-Based healthcare, Bond University, Gold Coast, Qld, Australia; and 7School of
Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong
Kong SAR, China; 8Queensland University of Technology (QUT), Brisbane, Australia;
9Wellcome Trust, London; 10Austrian Agency for Research Integrity, Vienna, Austria; 11Berlin
Institute of Health, QUEST Center for Transforming Biomedical Research, Berlin, Germany

David Moher: ORCID 0000-0003-2434-4206
Lex Bouter: ORCID 0000-0002-2659-5482
Sabine Kleinert: ORCID 0000-0001-7826-1188
Paul Glassiou: ORCID 0000-0001-7564-073X
Mai Har Sham: ORCID 0000-0003-1179-7839
Virginia Barbour: ORCID: 0000-0002-2358-2440
Anne-Marie Coriat: ORCID 0000-0003-2632-1745
Nicole Foeger: ORCID 0000-0001-7775-7325
Ulrich Dimagi: ORCID 0000-0003-0755-6119

23rd November 2019

doi:10.1371/journal.pbio.2004089
...and some actions and concrete changes
CRediT – Contributor Roles Taxonomy

CRediT (Contributor Roles Taxonomy) is a high-level taxonomy, including 14 roles, that can be used to represent the roles typically played by contributors to scientific scholarly output. The roles describe each contributor's specific contribution to the scholarly output.

RCUK Policy on Open Access and Supporting Guidance

1. Introduction
(i) Free and open access to the outputs of publicly-funded research offers significant social and economic benefits as well as aiding the development of new research. The Government, in line with its overarching commitment to transparency and open data, is committed to ensuring that published research findings should be freely accessible. As bodies charged with investing public money in research, the Research

Key Points to Note

- This policy applies only to the publication of peer-reviewed research articles (including review
How we judge research outputs when making funding decisions

Robert Kiley, Head of Open Research, and Jim Smith, Director of Science, discuss the steps Wellcome is taking to fulfil the principles of the San Francisco Declaration on Research Assessment (DORA).

Credit: Science Photo Library

Policy on Open Access Publishing Guidance

Funded research offers significant social and economic benefits. The Government, in line with its overarching commitment to ensuring that published research findings are made freely available to the public, supports open access to publicly funded research. This includes taking steps to make publicly funded research outputs freely accessible to the public, including published research articles.
Ghent University is changing course with a new career model for professorial staff

(07-12-2018) Ghent University dares to think. Ghent University also dares to push its own boundaries.

On December 7 the Board of Governors has approved a new career and evaluation model for professorial staff (ZAP) as well as the accompanying regulations.

Rik Van de Walle, Rector: "This is a very important decision for Ghent University and its staff. With the new career and evaluation model, our aim is to restore the confidence of our professorial staff instead of excessively measuring and controlling their activities. The starting point is that those who perform well will be promoted - with a minimum of formal procedures for accountability and administrative inconvenience."

"A predominantly quantitative and output-driven academic evaluation process makes way for talent development and growth, prioritizing vision development and strategy – at the personal as well as the group level. Quality prevails over quantity. Needless to say, we are confident that the intrinsic motivation of each ZAP member ensures that no one needs a priori objectives in order to perform well in the core tasks of our university: education, research and institutional or social engagement."

Credit: Science Photo Library

In 2004, the U.S. government directed NIH-funded institutions to ensure immediate Open Access to the publication of peer-reviewed research articles including preliminary research articles and supporting guidance (sections of the final guidance).

Although a policy was developed with the goal to ensure the immediate public availability of U.S. federal funds, it may not be sufficient to enable the full impact of the policy over a decade ago, we made it clear that the intrinsic merit of the work and not merely the format of the output will be the determining factor in peer review. Therefore, post-publication, open access should only be available to the publication of peer-reviewed research articles, which includes articles that have not yet been peer-reviewed. Scientists and institutions should comply with these guidelines to ensure the immediate public availability of their research. Conversely, the research articles will be made available to the public as soon as possible after publication.
Dutch end ‘one-sided’ research focus and hope world follows

Proposals include new job classifications, a rolling back of metrics, and shorter publication lists in a bid to end excessive ‘emphasis on research performance’

December 3, 2019

By David Matthews

Higher education institutions across the world should follow a move by the Netherlands to reward academics for more than just research prowess, the country’s university association has said, following the release of new proposals to change scholars’ career incentives.

Dutch universities and funding agencies want an end to what they say is a “one-sided emphasis on research performance at the expense of teaching, social impact and management, plus open and collaborative research.”
3. What can young researchers do?
1. Voice your concerns (and your praise)

Be vocal about what bothers you (and what you like). Raise these concerns with senior researchers, groups who are seeking ECR’s views, or even on social media. Tell the editors you publish with what you would like their journal to offer. Introduce senior staff to new developments in open science…

→ Raise awareness (of problems and solutions)
2. Question your goals and help others question theirs

Do you do this for science or for advancing in your career?
Do you publish to share a message or to add a line to your CV?
Do you collaborate to be an author or because you are interested in the project?

→ Distinguish strategies from science
3. Question your own habits

- Working 24/7?
- Secrecy?
- Open about mistakes, failures, and limitations?

→ Set the right standards
4. Look beyond academia

Instead of questioning yourself and your ability to fulfil what is expected of you, question what is expected of you. Your academic career does not define who you are and what you are worth.

→ Challenge expectations, not yourself
The future of science
Huge thanks to OAA organisers for inviting me, for supporting my trip, and for making possible such a great event!

Special thanks to all our participants and to my supervisor Wim Pinxten.

Project funded by UHasselt Bijzonder Onderzoeksfonds grant 15NI05

Thank you!

naubertbonn
noemie.aubertbonn@uhasselt.be
orcid.org/0000-0003-0252-2331

Illustrations by James Graham, used with permission, photo from Jeremy from Unsplash, and some icons from thenounproject.
Huge thanks to OAA organisers for inviting me, for supporting my trip, and for making possible such a great event!

Special thanks to all our participants and to my supervisor Wim Pinxten

Project funded by UHasselt Bijzonder Onderzoeksfonds grant 15NI05

Illustrations by James Graham, used with permission, photo from Jeremy from Unsplash, and some icons from thenounproject

Webinar: PhD students take on openness and academic culture

17 December 3:00 - 4:15 PM GMT

http://oaspa.org/webinar-phd-st